• <u id="saeeq"><wbr id="saeeq"></wbr></u>
  • <s id="saeeq"><div id="saeeq"></div></s>
  • <u id="saeeq"></u>
  • <u id="saeeq"><noscript id="saeeq"></noscript></u>
  • <s id="saeeq"></s>
  • [7-31] Learning Representation for Fine-Grained Text Analysis

    文章來源:  |  發布時間:2015-07-28  |  【打印】 【關閉

      
    SKLCS Seminar
     
    Title: Learning Representation for Fine-Grained Text Analysis
    Speaker:  Lizhen Qu (Macquarie University, Australia)
               people.mpi-inf.mpg.de/~lqu
    Time: 31st July 2015, 15:00
    Venue: Seminar Room (334), Level 3, Building 5,
            Institute of Software, Chinese Academy of Sciences (CAS),
            4 Zhongguancun South Fourth Street, Haidian District, Beijing 100190
     
    Abstract:
    My talk will consist of two parts. In the first part of the talk I
    will present Senti-LSSVM model for sentiment-oriented relation
    extraction.  This task aims to jointly extract both sentiments (e.g.
    Paul likes Nexus 5.) and comparisons (e.g. Paul thinks Nexus 5 is
    better than Galaxy S5.) from sentences. The corresponding outputs are
    directed hyper-graphs and the lexical features are learned with
    recursive neural networks.
     
    In the second part, I will introduce my recent work at NICTA on
    applying deep learning techniques to a number of natural language
    processing tasks, including identification of multi-word expressions,
    named entity recognition, part-of-speech tagging, and chunking. We
    find that deep learning techniques perform especially well on
    cross-domain tasks. We have achieved 10% improvement over competitive
    baselines on named entity recognition for novel types.
  • <u id="saeeq"><wbr id="saeeq"></wbr></u>
  • <s id="saeeq"><div id="saeeq"></div></s>
  • <u id="saeeq"></u>
  • <u id="saeeq"><noscript id="saeeq"></noscript></u>
  • <s id="saeeq"></s>
  • 久久久综合香蕉尹人综合网