• <u id="saeeq"><wbr id="saeeq"></wbr></u>
  • <s id="saeeq"><div id="saeeq"></div></s>
  • <u id="saeeq"></u>
  • <u id="saeeq"><noscript id="saeeq"></noscript></u>
  • <s id="saeeq"></s>
  • [03-03]Computing sparse Fourier sum of squares on finite abelian groups in quasi-linear time

    文章來源:  |  發布時間:2022-03-01  |  【打印】 【關閉

      

    Title: Computing sparse Fourier sum of squares on finite abelian groups in quasi-linear time

    Speaker:楊劍霆( 博士研究生)中國科學院數學與系統科學研究院

    Time: 33日(周四)10:00 AM

    Venue:中科院軟件園區5號樓三層 337 會議室

    Abstract: The problem of verifying the nonnegativity of a real valued function on a finite set is a long-standing challenging problem, which has received extensive attention from both mathematicians and computer scientists. Given a finite set $X$ together with a function $F:X \to \mathbb{R}$, if we equip $X$ a group structure $G$ via a bijection $\varphi:G \to X$, then effectively verifying the nonnegativity of $F$ on $X$ is equivalent to computing a  sparse Fourier sum of squares (FSOS) certificate of $f=F\circ \varphi$ on $G$. In this talk, we show that by performing the fast (inverse) Fourier transform, we are able to compute a sparse FSOS certificate of $f$ on $G$ with complexity $\operatorname{O}(|G|\log |G| + |G| t^4 + \operatorname{poly}(t))$, which is quasi-linear in the order of $G$ and polynomial in the FSOS sparsity $t$ of $f$. We demonstrate the efficiency of the proposed algorithm by numerical experiments on various abelian groups of order up to $10^6$.

    Bio: 楊劍霆,中國科學院數學與系統科學研究院四年級博士研究生,導師為支麗紅研究員。

  • <u id="saeeq"><wbr id="saeeq"></wbr></u>
  • <s id="saeeq"><div id="saeeq"></div></s>
  • <u id="saeeq"></u>
  • <u id="saeeq"><noscript id="saeeq"></noscript></u>
  • <s id="saeeq"></s>
  • 久久久综合香蕉尹人综合网